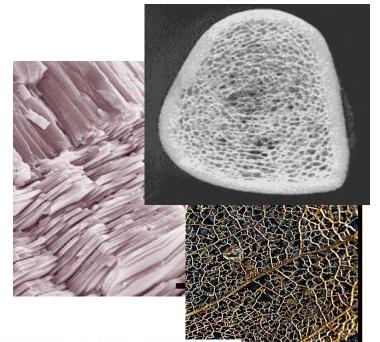
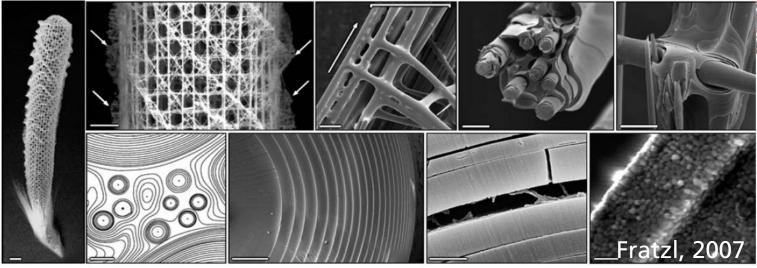
Material- und Prozessentwicklung für das Mehrkomponenten Lasersintern

IPA Anwenderforum – Rapid Product Development, 19.09.2012 Stuttgart


Jan Blömer


Werkstoffe und Interaktion Fraunhofer UMSICHT

Einleitung

- Motivation
 - Natürliche Materialien erreichen Ihre herausragenden Eigenschaften durch skalenübergreifende Strukturierung
 - BMBF Projekt Bionic Manufacturing Fraunhofer IWM, Sintermask, rpm, Folkwang, Authentics

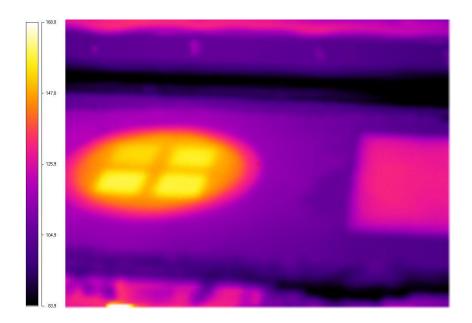
Einleitung

- Umsetzung
 - Selektives Lasersintern bietet beste technische Eigenschaften
 - Freie Formgebung
 - Bisher nur homogene Materialeigenschaften
 - → Material- und Prozessentwicklung

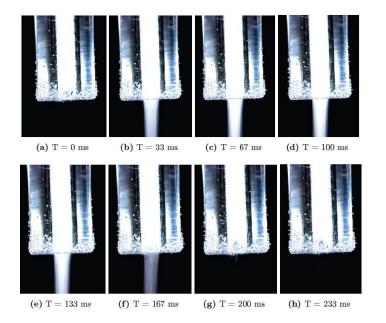
Folkwang, IWM, rpm 2012

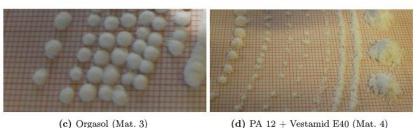
Prozessentwicklung

Lasersinterversuchstand


- Mini SLS-Anlage
 - Experimentierplattform für neue Prozesskomponenten
 - Teststand für Materialien
 - Materialmengen ca. 500 ml
- Prozessbedingungen wie in großen Anlagen
 - 190°C (Ziel 230°C)
 - 30 W CO2 Laser
 - 5 m/s Scangeschwindigkeit
 - Inertisierung N2

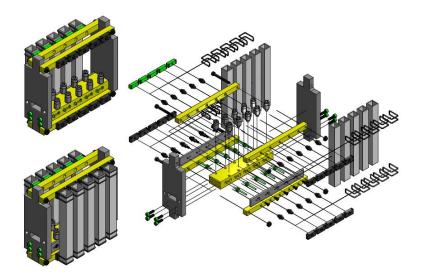
Lasersinterversuchstand II


Bauraum Plattformdurchmesser 110mm


Temperaturverteilung $\Delta T < 3$ °C

Neue Pulverdosierung

- "Pulverdruckkopf"
- Matrix- oder Single-Anordnung
- Literaturstudie
 - Elektrostatisch (Laserdrucker)
 - Volumetrische Förderung
 - Gravimetrische Förderung
 - Pneumatische Förderung
 - Glaskapillare mit Piezoanregung
- Glaskapillare versagt bei höheren Temperaturen



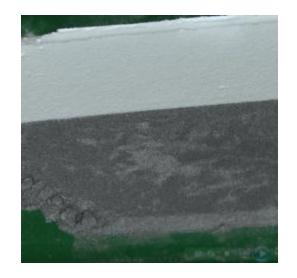
(d) PA 12 + Vestamid E40 (Mat. 4)

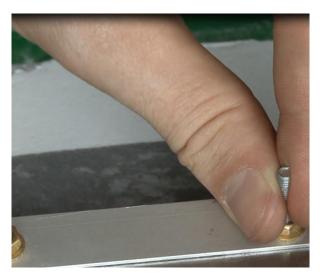
Neuer Pulverdruckkopf

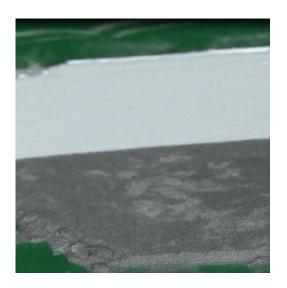
Pulverdruckkopf

- Ablage von "2" Pulvern funktioniert
 - Zur Zeit nur eingefärbt
- Noch keine Steuerung
 - Nur Streifen
- Aufbau von hohen Rändern

Neuer Pulverdruckkopf




Pulverauftrag



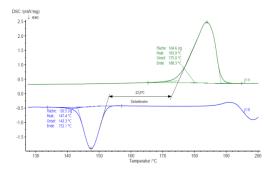
Glattgezogen

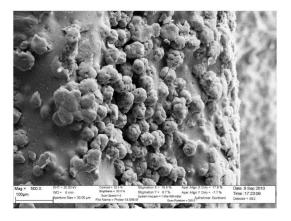
Neuer Rakel zum Einebnen der Oberfläche

Folie 11

© Fraunhofer UMSICHT

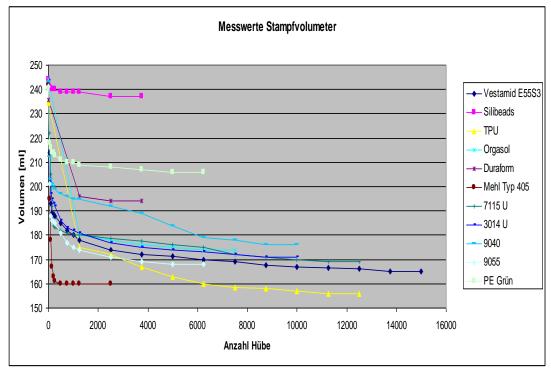
Fraunhofer

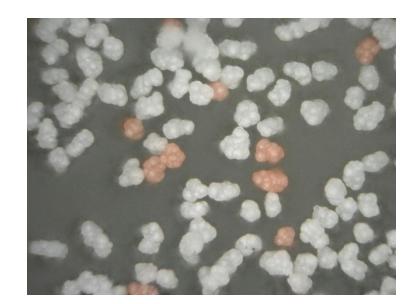

Materialentwicklung

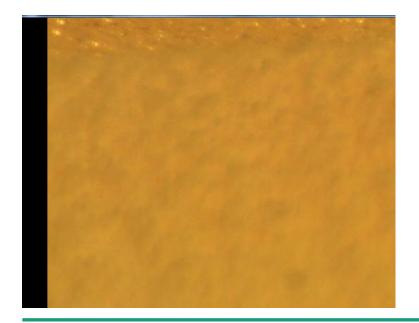


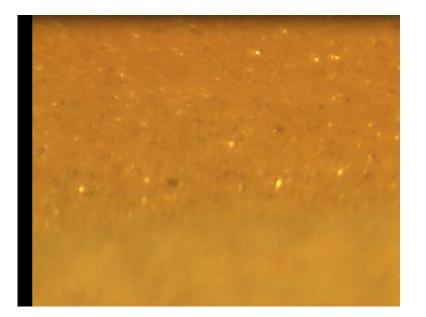
Materialentwicklung

- Prozessschritte
 - Compoundierung
 - Pulvererzeugung (kryogene Mahlung)
 - Konfektionierung (Sieben)
 - Additivierung, Dry Blends
 - Charakterisierung Pulver
 - Sintertests
 - Charakterisierung Bauteil
 - Dünnschnitte
 - REM




Materialanforderungen


- Mahlbarkeit
- Pulverfließfähigkeit (Hausnerzahl, temperaturabhängig!)
- Nullscherviskosität
- Thermische Eigenschaften → DSC
- Schrumpf



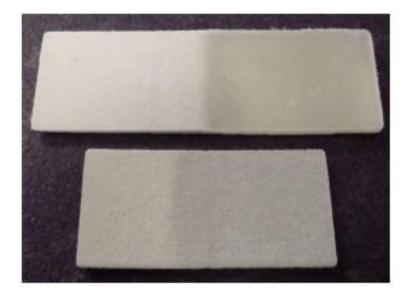
Untersuchung des Sinterns

- Sintern von teilgefärbten Proben
- Videoaufnahmen des Sinterns

Fraunhofer UMSICHT

Folie 15

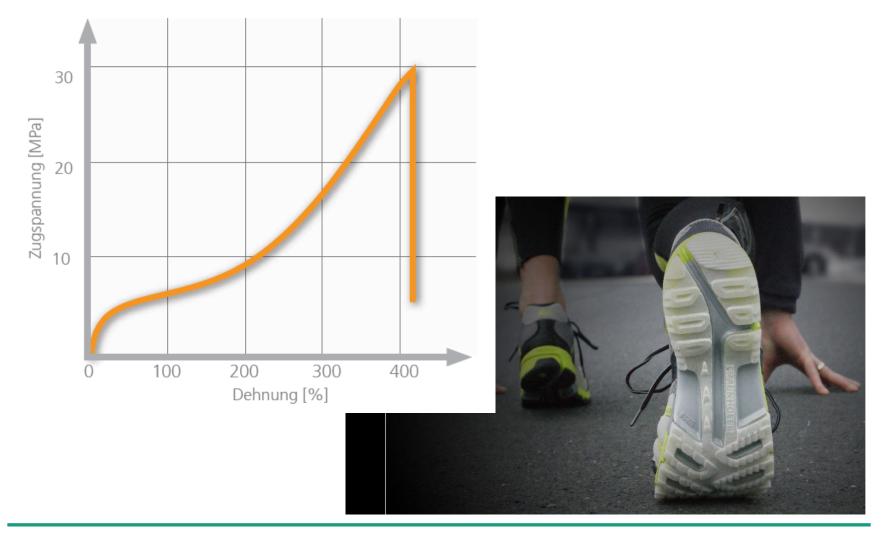
Kompatible Materialien zu PA12


Materialart	Handelsname	Stoffbasis	Kürzel	Hersteller	Shore-Härte
Polyamid 12	Polyamid 12 Duraform	PA12	PA12-D	3D-Systems	73D
Polyamid 12	Polyamid 12 Orgasol	PA12	PA12-O	Arkema	78D
Polyamid 12	Vestosint 2157	PA12	Vesto	Evonik Degussa	75D
TPA	PEBAX ES Black 9002	PA/PEther	PBlack	Arkema	47D
TPA	PEBAX 3533SP01	PA/PEther	P35	Arkema	35D
TPA	PEBAX 4033SP01	PA/PEther	P40	Arkema	40D
TPA	Vestamid E40S3	PA12/PTHF	V40	Evonik Degussa	40D
TPA	Vestamid E55S3	PA12/PTHF	V55	Evonik Degussa	55D
TPA	Vestamid E62S3	PA12/PTHF	V62	Evonik Degussa	62D
TPU	Elastollan 1185A	PU/PEther	E1185A	BASF	87A

Teilweise sinterbar, aber keines ist zusammen mit PA12 verarbeitbar

Kompatible Materialien zu PA12

- Polymere sind kompatibel
- Einfache Bauteile konnten erzeugt werden
- Sinterfenster sind für komplexe Bauteile zu unterschiedlich


PA12 + V55 PA12 + V62

Neue Materialien

- TPU
- Keine Peaks in der DSC
- Kein Sinterfenster
- Sehr geringer Schrumpf
- Niedrige Vorwärmung
- Hohe Laserleistung erforderlich
- Rauchentwicklung

Neue Materialien TPU

Ausblick

- Mehrkomponentendosierung ist aufwändig aber scheint möglich
- Materialauswahl ist sehr komplex
- Versuch der Kombination verschiedener TPU Typen
- Alternative Technologien
 - Sintermask (flächige Belichtung)
 - Dual Laser

FRAUNHOFER UMSICHT

Geschäftsfeld Werkstoffe und Interaktion

Vielen Dank für Ihre Aufmerksamkeit!

Jan Blömer

Telefon: +49 (0) 208-8598-1406

E-Mail: jan.bloemer@umsicht.fraunhofer.de

Fraunhofer UMSICHT

Osterfelder Straße 3 46047 Oberhausen

E-Mail: info@umsicht.fraunhofer.de Internet: www.umsicht.fraunhofer.de

