

**Sustainable 3D Printing Materials for Medical Applications** 

Fraunhofer IAP develops a new class of bio-based, non-isocyanate poly (hydroxyurethane) (BPHU) resins that combine sustainability, biocompatibility, and UV-curability. These materials are derived entirely from renewable raw resources and can be cured using standard UV-LED systems (385 nm / 405 nm) – eliminating toxic precursors and reducing environmental impact.

## **Key Features**

- 100 % bio-based, non-isocyanate formulation
- UV-curable, compatible with existing DLP and LCD printers
- Adjustable mechanical properties via chemical route:
- Aliphatic: flexible, highly elastic hydrogels
- Aromatic: stiff, load-bearing hydrogels
- Proven biocompatibility (DIN EN ISO 10993-5)
- Designed for customized 3D printed medical devices

## **Applications**

- Artificial pericardium and cardiac implants
- Patient-specific implants and scaffolds
- Advanced tissue engineering materials

## Impact

This innovation enables eco-friendly, high-performance hydrogel systems for next-generation medical 3D printing, bridging the gap between sustainability and clinical performance. Based on the latest research by Hennig et al. (2025), Fraunhofer IAP

## Fraunhofer Institute for Applied Polymer Research IAP

Dr. Wolfdietrich Meyer Tel. +49 331 568-1442 wolfdietrich.meyer@iap.fraunhofer.de www.iap.fraunhofer.de

exhibit overview