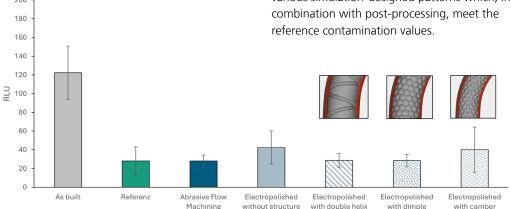





## Laser Powder Bed Fusion in the Food Industry


**Strategies for Surface Modification to Eliminate Residual Contaminants** 

Metallic 3D printing holds great potential, but its application in industries such as food and pharmaceuticals is limited by insufficient surface roughness.

Within the HygAM and HygAM 2 projects, the effects of post-processing methods and macro-structures on the surface properties and the cleanability of 3D-printed components for hygienic purposes were investigated. Various structuring approaches were analyzed and their impact on cleanability demonstrated. It was shown that both macro-structuring and post-processing can achieve macroscopic and microbial cleanability. Combining post-processing with macro-structuring further improves microbial cleanability to a level comparable with conventionally manufactured pipes.

In Figure 1, the Relative Light Units (RLU) are shown; this is a unit of measurement in bioluminescence cleanliness measurement used to quantify the amount of adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP) on a surface. The RLU value indicates how clean a surface is: the lower the value, the less contaminant is present and the cleaner the surface.

As a project outcome in HygAM 2, a valve block specifically designed for 3D printing was developed. The block's channels feature various simulation-designed patterns which, in combination with post-processing, meet the reference contamination values.



## Fraunhofer Institute for Machine Tools and Forming Technology IWU

Dipl.-Ing. (FH) Sebastian Stelzer Tel.: +49 351 4772-2134 sebastian.stelzer@iwu.fraunhofer.de www.iwu.fraunhofer.de

exhibit overview

Figure 1: Cleanliness of various surfaces with differing surface properties following a standardized cleaning procedure. © Fraunhofer IWU