MUGETO® - Functionally integrated implant

Hip stem endoprosthesis
© Fraunhofer IWU

This component is a prototype of a hip stem endoprosthesis, which shows the potential of additive manufacturing for medical applications, demonstrating the feasibility to integrate different functions in one part. 

Main features:

The inner cellular structure allows adaption of the implant’s stiffness and density to the patient needs (specific bone properties).

The Macro-porous surface structure can be applied either to selected surface areas or to the implant’s entire surface, enhancing the bone ingrowth (osseointegration).

Internal channels and cavities could provide a variety of integrated functions, e.g.:

  • post-operative medical treatment using a drug depot (cavity)
  • better implant fixation by inserting bio-resorbable filler material through the channels
  • post-surgery endoscopic inspection through the channels

Technical details:

  • AM-Technology used: Laser Beam Melting (LBM)
  • Material: Ti-6Al-4V



Concept Study / Demonstrator


Müller, Bernhard; Töppel, Thomas; Rotsch, Christian; Böhm, Andrea; Bräunig, Jan; Neugebauer, Reimund (2012): Functional integration in implants through additive manufacturing technology and smart materials. European Forum on Rapid Prototyping; Rapid Prototyping & Manufacturing. AFPR. Paris (Frankreich), 12.06.2012.

Mueller, Bernhard; Toeppel, Thomas; Gebauer, Mathias; Neugebauer, Reimund (2011): Innovative features in implants through Beam Melting - a new approach for Additive Manufacturing of endoprostheses. In: Paulo Jorge et al Bártolo (Hg.): Innovative developments in Virtual and Physical Prototyping. 5th International Conference on Advanced Research in Virtual and Rapid Prototyping. Leiria, Portugal, 28 September - 1 October, 2011: CRC Press, S. 519–523.





Fraunhofer IWU, Thomas Töppel,, +49 351 4772 2152